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A GENERAL LEAST SQUARES SOLUTION FOR SUCCESSIVE INTERVALS

Gertrude W. Diederich, Samuel J. Messick,
and Ledyard. R Tucker

Abstract

A general least squares solution for successive intervals is presented,

along with iterative procedures for obtaining stimulus scale values, dis-

criminal dispersions, and category boundaries. Because provisions for

weighting were incorporated into the derivation, the solution may be applied

without loss of rigor.to the typical experimental matrix of incomplete data,

i.e., to a data matrix with missingtntrics, as well as to the rarely occur-r

ring matrix of complete data. The use of weights also permits adjustments

for variations in the reliability of estimates obtained from the data. The

computational steps involved in the solution are enumerated, the amount of

labor required comparing favorably with other procedures. A quick, yet

accurate, graphical approximation suggested by the least squares derivation

is also described.
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A GENERAL LEAST SQUARES SOLUTION FOR SUCCESSIVE INTERVALS

Since Thurstone first developed the scaling method of successive

intervals, it has appeared in several essentially identical forms under

various names, such as absolute scaling (15), equal discriminability

scaling (6), and graded dichotomies (1). The procedure was first pub-

lished as a psychological scaling method by Saffir (14), the basic

rationale having been previously presented by Thurstone in his absolute

scaling of psychological tests (15, .18).

Experimental Procedures for Successive Intervals

The experimental procedure for the method of successive intervals

requires n stimuli to be sorted into ( k + 1 ) categories on some

attribute continuum. The categories' are usually ranked so that a stimu-

lus placed in category g is judged to have a higher psychological

scale value and, in some sense, "more of" the attribute in question

than a stimulus placed in category ( g - 1 ). Analogously to Cases I

and II of the Law of Comparative Judgment (17), the sorting procedure

may be repeated N times by the same person or performed once by each

of N different people.

This procedure yields a frequency distribution for each stimulus

over several of the categories on the attribute continuum, i.e., it

yields the number of times.,' fig , that the ith stimulus was placed

in the Eth category. These frequencies provide the raw material for

the analytical procedure of successive intervals, "which is an attempt

to account for the data by a single psychological scale. The basic

consideration is whether or not these frequency distributions can be

simultaneously converted to a common distribution, allowing unequal
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means and variances, on the same base line. The means of the converted

distributions would then correspond to stimulus scale values and the

standard deviations to what Thurstone has called "discriminal disper-

sions'" (16). Scale values for category boundaries are also obtained

from the method of successive intervals) thus permitting estimates of

the size of categories rather than assuming them to be equal as in

the method of equal-appearing intervals (19).

II

Solutions to the Scaling Problem

Successive intervals solutions for the n stimulus values have

been suggested by Saffir (14), Guilford (9), Mosier (12), Bishop (2),

Attneave (1), Garner and Hake (6), Edwards (3), Gulliksen (10), and

Rimoldi (13). Some of these articles als6 offer solutions for the

n discriminal dispersions and the k category boundaries. The

procedures vary in computational routine and with respect to certain

restricting assumptions) but they are essentially equivalent, These

procedures involve obtaining the proportion, pig of times a

stimulus i was placed in category g . The pig values are then

cumulated to give the proportion of times stimulus i was placed

below the gth category boundary, t , and these cumulative pro-

portions are usually converted into normal deviate values, Zig

Various successive intervals solutions presented in the literature

have used normal curve transformations .or other similar transforma-

tions such as the logistic. Any similar function giving a one-to-one

correspondence between Pig and zig could be used (see 10).



_ _ _ F

The normal deviate value obtained from such a transformation may be

expressed as follows:

t " m )
Zig (is

where zig M the normal deviate value corresponding to a cumulated proportion,

t = the upper boundary of the Eth category,
g

mi = the scale value of stimulus i , and

s = the discriminal dispersion for stimulus i

The category boundary can then be expressed as

tg = m + siZig (2)

This equation is what Torgerson calls a special case of the Law of

Categorical Judgment (20). Algebraic solutions for mi s , and tg

can then be obtained from this relationship by arbitrarily choosing one

of the si values as a unit and one of the mi values or their average

as an origin.

Gulliksen (10) derived an explicit least squares solution for mi

'si  and tg by minimizing the following error term:

n k 2.E=- Z (mi + -t (3)
b i-l g=l s g

where b is an arbitrary scale factor.
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The following restrictions, which fix an origin and a unit, were at-

tached to the function to be minimized by Lagrange multipliers:

k
E t =ka()

g=l g

and

k
E t = k(a2 +b) , ()

g=l 
g

where k is the number of category boundaries, i.e., one less than

the number of categories. These restrictions place the mean scale

value of the category boundaries, t , at a and their standard
g

deviation at b

A General Least Squares Solution

This paper is concerned with a general least squares solution

for successive intervals, which is an attempt to express the variables

mi, s i , and t in terms of each other, instead of solving for

them explicitly Once uch relationships have been obtained, an

iterative procedure can be utilized to converge upon mi , si , and

t . In an attempt to obtain a least squares solution that wouldg

apply equally well to data with either complete or incomplete over-

lap, a weighting system was incorporated into the derivation. 'Thus
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the "incomplete overlap" situation could be easily handled without

loss of rigor by assigning weights of zero to the missing entries.

As it turned out, the present iterative solution also involves a com-

putational routine that is not excessively laborious.

The general strategy, then, of the present least squares deriva-

tion is to solve implicitly for mi , s, , and t in terms of each

other and then to set up rules for iterating to convergence values.

The derivation proceeds as follows:

Let £ig represent an estimate of t that would be obtained

from stimulus i if mi and si were known:

-ml +sz (6)
ig 'i ,iig

Let eig represent the error made by estimating t in this fashion:t g

eig mt ig- tg = mi + s zig - t . (7)

Since the error term to be minimized must contain provisions for

weighting, let it be written as

n k1 2
E 2 E i (8)

b i=l g=l igig



where w is a weight that may be chosen in any fashion as long as the
ig

following restriction is met:

p =0
For z + O , i.e., when. ,then w 0 and wiz 0

igp l ig g

An arbitrary origin, a , and unit, b , for the t-scale. may now be

specified by

k n
E t Ew -Wa , (9)

g=l g i ig

k 2 n
E Ew. = W(a2 + b2 ) , (10)

g=l g i

where W is the constant defined as

kn
W _-- Ziw

gi i

Thus, the weighted mean scale value of the category boundaries is set at

a and their weighted standard deviation at b , as can be readily seen

if equations 9 and 10 are rewritten as''

k n
E(t -a) g-0 (11)
g

and

n
E(t - a )2 f uWb 2 (12)
9



These restrictions generalize for the weighted case the definitions used

by Gulliksen in the unweighted case (see equations 4 and 5). Since the

t-scale is determined only within a linear transformation, a and b

may be set at any values desired, e.g., a convenient possibility for the

origin, a , might be zero and for the scale unit, b , which must bb-

positive, might be unity.

Using two Lagrange multipliers 7 and 2% , the restrictions

setting origin and unit may be included in the error term as follows:

1 n k 2 k n
2E Z w ig(mi + )+ ( Et Ew - Wa)

b i=l 1 g=l s gi

k n 2 2
- ~E t 9 Ewig - W(a + b )] (13)

g-l g

Exccept for the weights, wi equation 13 is identical to the term

minimized by Gulliksen (see equations 3, 4, and 5). His solution, then,

is the special case of the present one in which all of the weights are

k n
equal to unity and w = k and Ew = n . Because of this restriction

e ig ig

to unit weights, only data with complete overlap can be considered. Equa-

tion 13 is also similar to the term minimized by Tucker (22) in developing

a least squares solution to the normal ogive model for categorical data,

which is formally equivalent to the successive intervals situation (see 21,

Chapter 13). Tucker's solution, like the present one, involves weights

and is iterative, but instead of minimizing the sum of squared differences

between theoretical and estimated t-values., he minimized the sum of squared

differences'between theoretical and observed -z-values.



The differentiation of Q with respect to each of the m in turn

yields the n equations

am 2 w -Ig (m4 
+ 8 -z g t ) (+l) (i-l...n) (14)

i b j

Expanding and setting the partial derivative equal to zero,

k k k
m Ew + s EW z - Ew t = 0 (15)

Sig i ag ig 4"gg.
g g

The solution for mi can now be written as

k k
Ewigt - s. ZWigZi

Sm. = 5 k (16)
i, 19 9 i ig

g ig

Q is now differentiated with respect to each s in turn to yield

the n equations

-- m + sz - t )(Zzg) (i ...n) (17)
i b g

Expanding and setting the partial derivative equal to zero,

k k 2 k

mi gwigzig + si Zg igZig " iggig 0 (18)
g~ g g

Substituting the value of mi from equation 16 we have

k k k 2(T'Wig Z g) (zrig t g s i (T'wg gz- g)2 k k
+s Lwi z

2  - tEW Z 0 (19)

Skg ig igtg ig
DLi W ig g

g 9



Solving for s. ,

k k k k

(EWigtgzig)(gZWig) (grWigZig)(W igtg)

i g k k k (

"iig g) ig igig

For the purpose of parenthetical comment upon the form of si .

equation 20 can be rewritten in the following manner:

k
zwig (t - i)(zig - "

s k 2 (21)

Zig(Zig i

where
k

E2w z
ig ig

9
i k

9 igg

and
k
Ew tZigtg

ti = gk

EW ig
g

It is apparent from the form of equation 21 that si  is the slope of a

regression line. It is the coefficient for the regression of t on z

This immediately suggests a graphical representation of the data, which

will be presented in a later section. It is also interesting to note that
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Tucker's solution (22), which minimized the sum of squared errors in the

z direction instead of in the t direction, involves the other regres-

sion--the regression of z on t

Utilizing the value of si  obtained in equation 20, it is also

possible to rewrite the formula for mi  in terms of tg as follows:

k k 2 k k
(,' ig gg ig)" (rigtgzig) (LigZ ig

mi k k k 2 (22)

( -w i (wg g-r g

As will be seen in a later section, this is the form of mi which it will

be convenient to use in computational routines.

Differentiating Q with respect to each t in turn yields the kg -

equations

n n n
Q w (m + - t )(-I) + Z Yig i-

t i g i ig g i g ig

(gl. .. k) (23)

Expanding and setting the partial derivative equal to zero,

n n n nt Ew - iw (m+szb27tg ZW = 0 (
tg ig ig (mi + siZig) + b 2% ig 2 ig -

Define

n
EW ig(mi + siZig)
1 (25)

g n

Er ig



n
Rearranging the terms of equation 24, dividing both sides by EWig , and

i
substituting the definition of v from .equation 25, we may write

g

{L

(1 - b2Y)t. = V - b2X (26)

The solution for t can now be written as
g

v -b2%
t 9- g  (27)

1 b b2

Summing equation 24 over g and utilizing the definition of equation

9, we may write

kn
Wa - awi(mi + siZjg) + Wb2- - Wab2 " =0 (28)

gi g i

kn
Consider the term. Ew ig(mi + sizg) By interchanging the order of

gi

sunmation and by inserting the values of si and mi given in equations

20 and 22, respectively, this term may be written as

k k 2 k k 2

(m k k n (LIigtg)[ (ZigZig)(Lig) - (EwigZig)

i g 1 (igZ2g) (ig) _ (gWigZig)2
ig 2g k

nk
- .w t (29)
ig g
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Utilizing the definition of an origin given in equation 9, the term can be

further simplified to

nk nk
Sw (m +sz =)TW t =Wa (30)ig ig i i ig- ig ig g

Now, equation 28 can be written as

2j Ws2Y
WbXk .Wab~f

from which

X= ay (31')

It should be noted in passing that equation 30, in terms of the v of
g

equation 25, indicates that the weighted mean of v isg

k n

;- ig-a (32)

ZEiggi i

If the above value of X is substituted into equation 26 and

(1 - b 2)a is subtracted from both sides of the equation, then equation

26 becomes

(1 - b2 )(t - a)Vg - a (33)

n
Squaring both sides of equation 33, multiplying through by ZWig ,andi i

summing over , we may write

2 k n k 2 n
(1 - b Y) E(tg - a) Eig Z(v - a) Eig (34)
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Utilizing the definition of a scale unit in the form given in equation 12,

we may write equation 34 as

22W2 k 2n

(1- b )wb = Z(v a)2  ig (5)
g g

from which

k 2n
2 7-(V - a) Ew

b2
(1- ) gW (36)

Using the value of X found in equation 31, the solution for t
g

given in equation 27 may be written as

v - ab 2  v -a
t 9 g 9 g + a (37)

2
Substituting the value of ( 1 - b2y ) from equation 36, the solution for

t becomes
g

v -a
+ a (38)

9 k ~a 2  wi

6 Wb 2

y may also be represented in terms of the sum of squares of errors

as follows: Equation 8 may be written as
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2 nk 2 nk 2
b E = iwg(mi + siZi - tg) = iY 1i(mi + sizi)

ig S ii i gi ii

k n k 2n
2Ft Zw (m +sz )+Et (39)
g g i ig i i ig g g ig

Consider the first term of the above expression:

nk nk n k
EEw C M i + s z g)2 . Uw (M i + s z i)(m± + si z i EV g (m i + s z g)

n k

+i Es izi(mi + sizig) (40)

Substituting into the last term of equation 40 the values of s and mi

from equations 20 and 22, respectively, and simplifying, and remembering
k k

that Ewig(mi + sizig) was found to be equal to Ew igt in equation 29,
g g

we may rewrite equation 40 as

nk n k n k k n
Ewi(mi + sZg) - EM rW t5 +Z8 Ew t z mEt EW ( (41)

igi i ig i gg g i i ig g ig g.ig(mi+ siZig)

Equation 39 may now be written as

k n k n
b2E = - Zt Ew, (mi + sz ) + Et iV (42)g iig i si ig g g I

g i g gi~(2

Utilizing the definition of a scale unit from equation 10, equation 42 becomes

2k n
bE =W(a + b)- Et EW (m + ) • (43)

g 91ig i i igL
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The size of the error term at the solutionrmay now be evaluated by

substituting for t in equation 43 its value from equation 37, and by

n g n
noting that ZWig(mi + sizig) - v gw from equation 25. Equation 43., g ig

then becomes

2 k2n k n k n
b E" W(a + b). .2 [ g [ E iw -a Ev g l g ] " a g Zw g . (44)

1-b~ g~j ggg g g

k~ n
In equation 32 it was seen that Zv gw - Wa , so equation 44 may beg g i

written aa

k n
2 2 2 1 2 2bE=Wa +Wb- 2 [ v2 Ew - Wa -Wa (45)

1-b g

k k n k 2nRewriting [Zv 2 -rW a2 ] as 2~_ a i ,adntn h au

g g ig ga asE )Z ig adntn h au

of this term in equation 35, we may write equation 45 as

Wb2  (1 b 2Y)Wb2 (46)

The error term may now be expressed as

E Wb2  (47)

The Iterative Procedure

Since the t-scale of successive intervals is determined only with a

linear transformation, the origin, a , and the scale unit, b , may

be set at any values desired. The values most convenient for computational
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routines are a - 0 and b = 1 With such a placement of origin and

unit, the restrictions given in equations 9 and 10 may be restated as

it k n
Et EW -0 and (48)

k n
E t2 E W , respectively. (49)9 g g ig

The formula for category boundaries given in equation 38 may also be

rewritten in terms of this origin and unit as follows:

v
t 9(50)
g9 k n

9 1 2I g g ig

Now, equations 20, 22, 25, and 50 may be used to set up an iterative

procedure to obtain convergence values for s, , mi , and tg . If

some initial estimate, tgI  , of the category boundaries, t , were

available, equation 20 could be solved to obtain initial estimates, sil

of the discriminal dispersions, si  . The initial t-estimates, tgl

would, of course, have to be converted to meet the restrictions of equa-

tions 48 and 49.

In other words, if some set of k numbers, vgI  , is available as

possible estimates of the category boundaries, before they are used in

the above solution, they must first be converted to meet the restrictions

of equations 48 and 49. This can be done as follows:
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V -v1

tgl =, where
vI

k n
= Ev Ew and

ggl ig

= l k  2 n
a -( Ew (51)V --

Initial estimates of si  can then be obtained from equation 20 as

follows:

k k k k
(Ewtigtgzig)(ig) - (Evig zig)(W igt l)

Sil k k k (
(.Ewigz )(Erwig (.zw z~

g ig g i

If a subscript a is introduced to indicate the Oth cycle in the itera-

tive procedure, equation 52 can be rewritten as a fonula for the ath

estimate of s

k k k k
(Ew gt az i)(Ewig )- (z) g(-wgtg

k k k 2 (53)
(EWi z 2)(Evig -r izi)2

9 ig g 9 g

In order to set up systematic computational routines, it would seem

desirable at this point to define the following coefficients:
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k

k
Z:w. z.

Ag 9 g (54)
Bi  k k k2

(zwZ -)( - (EW zi)

k

Evw z

(E gzi 8  ig - (Twgzi) (6k 2
EW ig Zig

C9(56)
Ci  k

Since the components of the above coefficients are obtainable directly

from the data, they are the same for all cycles of iteration and need

be computed only once for the entire procedure.

Equation 53 for the cxth estimate of the discriminal dispersions,

si  , may now be written as

k k
i si =  

i  igtga ig ° 
i  igtga(7

Having found estimates for t and si  , the Oth estimate of the

scale values, mi , may now be obtained from equations 22, 55 and 56

as follows:

k k
mia =C i Ew igtg- Bi  w igtg z ig (58)

8 8
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Now, new estimates of v may be obtained from a formula analogous to
g

equation 25:

wig ia ig iaig
!K Vg(a+l) n n5)

H

A new estimate of the t-scale may now be found by using equation 50 as

follows:

tg(g+l) (6o)fi'g t(a+1 ) "

Ei 90g( +1) iEWig

The above procedure may be repeated by inserting this value of

tg(+l) into equation 57 to obtain si(cc+l) , which in turn may be

used to obtain mi( and, subsequently, tg(+2) . This cycle may

then be iterated until two successive estimates of t are as similar
g

as desired, i.e., until [t(+l) - t ] is negligible.

The amount of scaling error at any given cycle of iteration may be

evaluated from equation 43, with a set equal to zero and b to unity,

as follows:

k n
E w- Et Ew(m + s ) (6l)a ga ig ia lazig

The error should decrease as iteration proceeds until at convergence

k 2 n
E Wy W(l - g1 Ew (62)

g gij
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The one step remaining to be considered before the above iterative

procedure may be applied in practice is the initial estimation of the

t-scale. One obvious starting point might be a set of equally spaced

numbers, such as the integers from 1 to k , to which the conversion of

equation 51 had been applied. By using such equally spaced t values,

a set of "equal-appearing" intervals is used as the starting point for

iteration to successive intervals. It may be possible, also, to increase

the rate of convergence in the iterative procedure by doubling or tripling

the difference between successive t-estimates, ioe., instead of using

g( on the (a + 1) trial, use tg(+ tgx +2[t t[]
U+l) g(O+l) ga g(ca+l) -gca

A cycle or two, and in some cases perhaps several cycles, may be

eliminated from the iterative procedure by using a computationally simple

linear solution for t as a first estimate. One of the simplest methodsg

for estimating t has been suggested by Garner and Hake (6) and.tby
g

Edwards (3) and involves averages of successive differences in Zig

values. Such averages are estimates of (tg - tgl) provided the dis-

criminal dispersions may be assumed equal. Torgerson (21) also gives

a simple algebraic ratio solution for t which does not require equalg

s. . Any of these algebraic solutions may be used to obtain initial

estimates for the iterative procedure, but the labor involved might turn

out to be as great as that in the cycle or two eliminated.

Some Weighting Systems Appropriate for Successive Intervals Data

Some comment is necessary at this point concerning the weights, wig

involved in the above least squares solution. It will be recalled that

the only restriction placed upon the choice of these weights was that



-21-

w 0o and w z 0o whecnK
ig ig ig 0

If 2 equals neither zero nor one, the 'weights may be set at any values

desired, e.g., wi may be set equal to unity for 0 < p <1 .

However, as Urban (23) hds pointed out, it is a principle of the

method of least squares that more reliable observations should have

greater importance than less reliable ones, so it would seem reasonable

to choose the weights in such a way as to take account of differences
in the reliability of the z values. Since the reliability of a pro-

ig

portion is inversely related to its variance, the weights used for such

a purpose would be proportional to 1 . These weights would also bePq

directly proportional to the information available from the observations,

since the reciprocal of the variance may be identified with quantity of

information (5).

Another point must also be considered in selecting weights for

successive intervals data. As reported by Guilford (8, p. 175), "Mller

argued that the proportions near .50 should be weighted more than the

proportions deviating in either direction from .50...an error in £

near .50, where p is changing at its maximum rate, as compared with

the change in ( z ), is not nearly so serious as at the extremes where a

slight error in is reflected in a large error in ( z )," Maller, then,

was advocating.a system which would weight directly in proportion to the

rate of change of £ with respect to z . These weights turn out to

be the ordinates, X , of the normal distribution corresponding to

proportions, £ ; a recent derivation of these weights is given by

'a,
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Finney (4). In practice both weighting conditions are usually combined
X2

to produce the Maller-Urban 
weights, X2

pq

It can also be shown that within an approximation the Mller-Urban

weights are the proper values for weighting normally transformed scores

inversely to their variance. Consider the following approximate relation-

ship stated by Kendall (11, p. 206):

var p = var z(63)

where var is an abbreviation for variance. If and z are related

by the unit normal distribution function, as is the case for successive

intervals, 2 is equal to X , the ordinate of the unit normal curve

corresponding to a proportion, p . Therefore,

F2

" varp X var z or

var Z " P- (64)NX2

Thus, inweighting inversely to the variance of z , the weight would
X~2

be proportional to since N is a constant in the successive
pq

intervals situations.

However, it is possible to use a simpler set of weights than

2S/pq , without sacrificing completely the differentiation between
reliable and unreliable zig values. For instance, one possible rule

for weighting would be to assign zero if the corresponding proportion
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contained less than some specified fraction, r of the maximum possible

information (corresponding to p - 5 ) and unity if it contained more than

th the maximum information. Or, all Z > c could be weighted zero,
~r 

> 9ol1b1egte eo

and all zig <c could be weighted unity; such a rule with a value of

c = 2 has been found to be convenient in practice (7, 8).

The use of a simple set of unit and zero weights also simplifies some

of the procedures involved in the above iterative solution. For instance,

if
I,"

wig= { :

or alternatively stated, if

r for Fig < c or Fig > c2

W ig , cI < c2
for cI _ Fig_< c2

the weights can be applied simultaneously with the conversion to zig
i.e., F < c or F > c2  can be converted to zero, while c <F < c

ig ig 1- ig- 2
are converted to the corresponding normal deviates, zig * With this kind

of procedure, the deviate values available for manipulation have already

had the weights applied; this would greatly simplify subsequent computations.

Suimnary and Illustration of Analytical Procedures

The analytical procedures involved in the above least squares solu-

tion for successive intervals will now be summarized, and an errorless

numerical example will be used to illustrate the computational routine.
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1. The experimental method of successive intervals yields the

category (1 to k+l) into which each of n stimuli was

placed by each of N individuals. These data may be sum-

marized into an n X(k+l) table, the cell entries of which,

fig , represent the number of times the ith stimulus was

placed in the Eth category. By cumulating the frequencies

in each row of this table so that each entry now represents

the number of times the ith stimulus appeared below the

gth category boundary, t , a set of cumulated frequencies,
g

F. , is obtained, which can be considered to be the start-ig

ing point for successive intervals analysis.

2., The cumulated frequencies are then converted into proportions,

Pig , and then to normal deviate values, Zig * For the

purpose of illustrating computational procedures, consider

the set of zig values presented in Table 1. The four scale

values, m, , four discriminal dispersions, s, , and three

category boundaries, t , which exactly fit these zig Values

under the restrictions of equations 48 and 49 are also given in

Table 1. Knowing a "true" set of scale values and category

boundaries, the convergence of the above iterative solution

may be illustrated.

3. A set of weights, wig , and an initial estimate, tgl I of

the category boundaries must now be determined.. For°he pr~sent

example, it was decided to use the weights given in Table 1;

they were assigned so that
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Wjig 1 ' for 3- 1 g . 012for o <2 0

It was also decided to use an equally-spaced scale as a

first estimate of t g Accordingly, using the integers 1,

2, and 3 as * , the conversion of equation 51 produced as

t g the values -1.16422, .15523, 1.47469, It should be noted

that if the "true" t values given in Table 1 were used asg

first estimates in the present iterative procedure, they-would

be exactly reproduced at the end of one cycle.

4. Now, the coefficients Ai I B, , and C. may be computed

according to equations 54, 55, and 56, respectively; these

values are presented in Table 2, along with the values of

k k
Ew igt and Ew igt glz .g g

5. Sufficient information is now available to solve for first

estimates of the discriminal dispersions, Sil using

equation 57 (see Table 2).

6. Now, first estimates of the scale values, mil , can be

obtained, using equation 58 (see Table 2).

7. New estimates, tg2 , of the category boundaries may now

be found from equations 59 and 60. It will be noted that

t given in Table 2 is closer to the "true" t-scale than
g2

t was.glk k

8. In order to iterate this solution$ new values of Zw t
gigg 2

k

and Zw t z must be computed. Using these values,ig g2 ig
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equations 57 and 58, respectively, may be solved to obtain

si2 and mi2  . Then, equations 59 and 60 may be used to

obtain tg3  , the third estimate of the t-scale (see Table

3). It should again be noted that the estimates of t atg

each successive cycle are approaching closer and closer the

"true" t scale. This procedure may now be repeated until
g

two successive t-estimates are as similar as desired.

A Graphical Successive Intervals Scaling Procedure

It was seen from equation 21 that s. is the regression coefficient

for the regression of t on z . This suggests a graphical solution

to successive intervals, which will be summarized below; the proceduresIi to be presented bear some similarity to the graphical methods of Mosier

(12) and Garner and Hake (6).

1-3. Steps 1 through 3 of the graphical procedure are identical to

the corresponding steps of the above analytical procedure. In

order to utilize the graphical method, a first estimate, tgl

of the category boundaries must be available, along with normal

deviate values and their corresponding weights.

4. The estimated t values are then marked off as the ordinategl

of a graph with z values used as the abscissa. The tgl

values are horizontal lines that hold for all stimuli, so

several plots can be made on one graph (see Figure 1). For

each stimulus, the zig values are plotted at the appropriate

tgI points, i.e., for stimulus 2 in the above numerical

example, points would be plotted at ( tgl = -1.164 , = -.5 ),

(t =.155, z=.5 ),and (t = 1.475 , z = 2.0 )as
d . 5 , u 1z =t n bg l

illustrated in Figure 1. Weights can be applied in the graphical
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procedure by clustering around each point a number of dots pro-

portional to the corresponding weight. A straight line can now

be fitted to the points by eye, giving more emphasis to those

points with bigger dot clusters in determining the slope of the

line.

5. The equation of each of these lines can be written as

tgI = mil z il~ig

orx more generally, as

tga = mia + si Zig (65)

The slope, si, , of each line is the _o % estimate of the

discriminal dispersion, and the intercept, mi, y when z = 0

is the ath estimate of the scale value. These intercepts and

slopes can be read directly from the graph, but they need not be

recorded until the final iteration.

6. In practice, the straight lines fitted to the plotted values

will rarely cross every point; each point will usually deviate

from the line by some amount, the amount of this deviation in

the vertical direction representing a scaling error (see Figure 1).

The vertical projection of a plotted point on the fitted line

produces another point, tig , which, since it lies directly on

the line, represents a theoretical or fitted estimate of tg

J (see Figure 1). For a given category boundary, there are n

fitted estimates tig , one for each stimulus. If the ordinates

of these g values are recorded, weighted averages of the
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ordinates can be used to obtain a new estimate of t as follows:
g

n

nigig , (66)
n Vg(1+1 )

Z ig
i

tg(a+) a (67)t lag )'

where

k n"(Wi -- z V g(+l ) Zw

and

k nW

gV(x+l) W [ g(,+l) - -(czl)f nwig

The only value, then, that need be read from the graphs in

going from one iterative cycle to another is tiga. The slopes

and intercepts corresponding to discriminal dispersions and

scale values do not need to be recorded until the final iteration.

7. This new estimate of t may now be plotted as the ordinate ofg

a graph with z values marked off as the abscissa. The cycle

may then be repeated beginning at step 4 until two successive

t-estimates are as similar as desired.

Summary

A general least squares solution is developed for the method of

successive intervals when weights are assigned to each error term.

These weights may reflect the relative amount of information contained
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in the corresponding observations. By use of zero weights, this method

is rigorously applicable to matrices involving incomplete data. An

iterative computational procedure is presented.
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t Scale t ig ValueT 2
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Weig h ,---- --tel 5t=0 O

Scale Value, M1,

tile-1.169 ----- -2 / !
4 3
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ZZ-2 Zn-I Z=O Z= I Z=Z Z=3

FIGURE I Z Scale

Graphical Solution for Numerical Example

Beginning with Equally Spaced tg.,



TABLE 1

Data for an Errorless Numerical Example, along with
"True" Scale Values and Category Boundaries

ig mi. 1 g

Stimu- Category
lus - 1 2 3 _________

1 0.0 2.0 5. 2 1 0o -1.06458 .53229 t 1 = -1.06458

2 -0.5 0.5 2. 2 2 1 -.53229. 1.06+58 t2 = 0'

3 -2.0 0.0 3.0 1 2 1 0 .53229 t= 1.59687

4+ -2.0 -1.0 0.5 1 2 2 l.06458' 1.06458
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TABLE 3

Second Iteration in the Numerical Example

I t
jStimu.. Ew t EWt z a I t

lus ig 2  g igg 2 ig 12 i2 g3

-2.14158, .06720 .56060 -1.08759 t = -1.06948

-.535161 4.26683 .06688 -.53362 t23 .00730

3 .55243 6.89364 .52963 .00570 t3 = 1.5919.

4 2.12525 3.68080 1.05467 1.05788

_ _ i _ _ _ _ _ _ __
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